Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 276

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of an RPV cooling system for HTGRs

Takamatsu, Kuniyoshi

Kakushinteki Reikyaku Gijutsu; Mekanizumu Kara Soshi, Shisutemu Kaihatsu Made, p.179 - 183, 2024/01

The HTGR has excellent safety, and even in the event of an accident where the reactor coolant is lost, the decay heat and residual heat in the core can be dissipated from the outer surface of the RPV, so the fuel temperature never exceeds the limit value, and the core stabilizes. On the other hand, regarding the cooling system that transports the heat emitted from the RPV to the final heat sink, an active cooling system using forced circulation of water by a pump, etc., and a passive cooling system using natural circulation of the atmosphere have been proposed. However, there is a problem that the cooling performance is affected by the operation of dynamic equipment and weather conditions. This paper presents an overview of a new cooling system concept using radiative cooling, which has been proposed to solve the above problem, and introduces the results of analysis and experiments aimed at confirming the feasibility of this concept.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2021)

Department of HTTR

JAEA-Review 2023-016, 82 Pages, 2023/09

JAEA-Review-2023-016.pdf:2.31MB

The High Temperature Engineering Test Reactor (HTTR) is the first Japanese High Temperature Gas-cooled Reactor (HTGR) with 30MW in thermal power and 950$$^{circ}$$C of maximum outlet coolant temperature that is constructed by the Japan Atomic Energy Agency located at Oarai-machi, Higashiibaraki-gun, Ibaraki-ken, Japan. The purpose of the HTTR is establishment of basic HTGR technologies, demonstration of HTGR safety characteristics and so on. The HTTR has had a lot of experience of HTGRs' operation and maintenance throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2021, as the HTTR completed activities to conform to the New Regulatory Requirements of Nuclear Regulation Authority, The HTTR restarted since the 2011 off the Pacific coast of Tohoku Earthquake and carried out the Loss-of-forced cooling test without Vessel Cooling System (VCS) operational at 9MW (Three gas circulators trip and VCS is stopped.) as the safety demonstration test. This report summarizes the activities carried out in the fiscal year 2021, which were the situation of the New Regulatory Requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

Journal Articles

Improvement of cooling performance of reactor pressure vessel using passive cooling

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

A fundamental study on the safety of a passive cooling system for the RPV with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. A comparison of the Grashof number between the actual cooling system and the experimental apparatus confirmed that both were turbulent, and the experimental results as a scale model are valuable. Moreover, the experimental results confirmed that the heat generated from the surface of the RPV during the rated operation can be removed.

Journal Articles

Study on heat transfer characteristics of reactor cavity cooling system using radiation

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Yamanashi Koenkai 2022 Koen Rombunshu (CD-ROM), 6 Pages, 2022/10

A fundamental study on the safety of a passive cooling system for the reactor pressure vessel (RPV) with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. As a result of the experiments, we succeeded in visualizing the natural convection in the experimental apparatus in detail.

Journal Articles

Brief introduction to research on geological disposal of high-level radioactive waste

Yamaguchi, Masaaki

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(1), p.38 - 41, 2022/06

This presentation outlined the framework and background of Japan's geological disposal research that has been underway since the 1970s and outlined research and development on the engineering technology of geological disposal and the performance assessment of geological disposal systems in the research and development fields. Specific assessment methods used in both R & D fields and recent research topics were also explained.

Journal Articles

Chapter 8, Human resource development in nuclear non-proliferation and nuclear security; Education at the University of Tokyo

Tamai, Hiroshi; Demachi, Kazuyuki*

Genshiryoku Heiwa Riyo To Kakufukakusan, Kakusekyuritei; NSA/Commentaries, No.25, p.199 - 202, 2020/06

Education on nuclear non-proliferation and nuclear security in the University of Tokyo is provided at the Department of Nuclear Engineering and Management for master's course graduate students and at the Nuclear Professional School for career experts. In this paper, both the courses are introduced and their education contents on nuclear non-proliferation and nuclear security are briefly described.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2018)

Department of HTTR

JAEA-Review 2019-049, 97 Pages, 2020/03

JAEA-Review-2019-049.pdf:4.66MB

The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor being able to get 950$$^{circ}$$C temperature of the outlet coolant with 30 MW of thermal power, constructed at the Oarai Research and Development Institute of the Japan Atomic Energy Agency is the first High- Temperature Gas-cooled Reactor (HTGR) in Japan. The purpose of the HTTR is to establish and upgrade basic technologies for HTGRs. The HTTR has accumulated a lot of experience of HTGRs' operation and maintenance up to the present time throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2018, we made effort to pass the inspection of application document for the HTTR licensing to prove conformity with the new regulatory requirements for research reactors that took effect since December 2013 in order to restart operations of the HTTR that stopped since the 2011 off the Pacific coast of Tohoku Earthquake. This report summarizes the activities carried out in the 2018 fiscal year, which were the situation of the new regulatory requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

Journal Articles

Maintenance management of HTTR (Characteristics and achievements of maintenance management)

Shimazaki, Yosuke; Yamazaki, Kazunori; Iigaki, Kazuhiko

Hozengaku, 18(1), p.16 - 20, 2019/04

no abstracts in English

Journal Articles

Visiting Professor's Research Division

Nakajima, Norihiro; Aoki, Keiko*

Tokyo Daigaku Jinkobutsu Kogaku Kenkyu Senta 2017-Nendo Kenkyu Nempo, p.51 - 53, 84, 2018/12

Visiting professors research division in the Research into Artifacts, Center for Engineering (RACE) has been conducting research collaboration in Socio-Artifactology and Human-Artifactology, in order to establish the methodology of the fusion research in sociology and science for artifacts engineering for the third era activity of RACE. The division decided to observe how the methodology works in applications with social experiments and numerical experiments for 2017.

Journal Articles

Evaluation of mean time between accidental interruptions for accelerator klystron systems based on the reliability engineering method

Takei, Hayanori; Furukawa, Kazuro*; Yano, Yoshiharu*; Ogawa, Yujiro*

Journal of Nuclear Science and Technology, 55(9), p.996 - 1008, 2018/09

 Times Cited Count:2 Percentile:20.74(Nuclear Science & Technology)

Experiences with existing high-power proton accelerators indicate that frequent beam trips are inevitable. One of the reasons for such frequent beam trips is the accidental interruption to protect accelerators against fatal failures. Generally, the failure frequency for the general machinery can be evaluated based on a reliability database for its components. On the other hand, the beam-trip frequency for the accidental interruption was not evaluated based on the reliability database because it has not yet been established. A principal reason for the lack of this reliability database is the inconsistency of data collection and analysis methods among laboratories. For example, there are at least three methods to estimate Mean Time Between accidental Interruptions (MTBI) for klystron systems. In the present study, the MTBI of the klystron systems of an electron/positron injector linac at the High Energy Accelerator Research Organization (KEK) was evaluated based on the reliability engineering method, in order to build the reliability database using the unified data collection and analysis method. As the result, the mean values of the MTBI by the traditional three methods were evaluated as 30.9, 32.0, and 50.4 hours. On the other hand, that by the reliability engineering method was evaluated as 57.3 hours, i.e., more than 1.14 times of the traditional results. Although these results are obviously different from traditional results, it appears that the present estimation based on the reliability engineering method is suitable for the MTBI of accelerator components as typified by the klystron system.

Journal Articles

Lessons learned from the process focusing on achieving the state of cold shutdown of Fukushima Daiichi Nuclear Power Plant Accident

Yoshizawa, Atsufumi*; Oba, Kyoko; Kitamura, Masaharu*

Ningen Kogaku, 54(3), p.124 - 134, 2018/06

Fukushima Daiichi Nuclear Power Plant caused a severe accident which released a large amount of radioactivity triggered by the Great East Japan Earthquake. The existing investigation reports of the accident prepared by several institutions pay attention only to the process which caused the accident but not much to the accident mitigation or the recovery process. This study focused on Unit 3 of Fukushima Daiichi Nuclear Power Plant, including its recovery process from the accident. Based on the public data, the time sequences for the recovery process between the accident occurrence and the state of cold shutdown were classified. Then, the groups of actions were sorted out in terms of ergonomics viewpoint. The important responses in the recovery process were identified and analyzed referring to the m-SHEL model. As a result, new lessons were learned from the accident case regarding the actions required for recovering from the accident.

Journal Articles

Thermal management of heat resistant FBG sensing for high temperature industrial plants

Nishimura, Akihiko; Takenaka, Yusuke*; Furusawa, Akinori; Torimoto, Kazuhiro; Ueda, Masashi; Fukuda, Naoaki*; Hirao, Kazuyuki*

E-Journal of Advanced Maintenance (Internet), 9(2), p.52 - 59, 2017/08

no abstracts in English

Journal Articles

Data analysis based upon abduction; For better understanding the result discussion in computational science and engineering

Nakajima, Norihiro

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 59(8), p.34 - 38, 2017/08

It is necessary the reading comprehension of output data to utilize the simulation in a design process, besides of the input data preparation. The simulation introduces enormous big data for evaluation. This paper describes data analysis technology in the analysis and the evaluation process of the output. The technology applies the artificial intelligence to minimize the unpredictable issues and oversight. It is based on the artifact engineering, which is a multi-sight abduction methodology, which derives a hypothesis.

Journal Articles

Study of the reduction method of the helium gas leakage from bolted gasket flanged connection for HTGRs

Hamamoto, Shimpei; Takada, Shoji

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 4 Pages, 2017/04

Journal Articles

A Sensitivity analysis for construction of the seismic response analysis model of a nuclear reactor building by using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Nakajima, Norihiro

Kozo Kogaku Rombunshu, B, 63B, p.325 - 333, 2017/03

The Japan Atomic Energy Agency promotes research and development of three-dimensional vibration simulation technologies for nuclear facilities. In this paper, we report a seismic response analysis of the Tohoku Pacific Coast Earthquake using three-dimensional models of the High-Temperature Engineering Test Reactor (HTTR) building. We conducted a sensitivity study using input parameters with uncertainty. Furthermore, we examined the variation of the seismic response results against the input parameters.

JAEA Reports

Development of transportation container for neutron startup source of High Temperature Engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Sawahata, Hiroaki; Yanagida, Yoshinori; Shinohara, Masanori; Kawamoto, Taiki; Takada, Shoji

JAEA-Technology 2016-038, 36 Pages, 2017/02

JAEA-Technology-2016-038.pdf:8.75MB

The High Temperature Engineering Test Reactor (HTTR) has three neutron startup sources (NSs) in the reactor core, each of which consists of $$^{252}$$Cf with 3.7GBq The NSs are exchanged at the interval of approximately 7 years. The NS holders including NSs are transported from the dealer's hot cell to the reactor facility of HTTR using a transportation container. The loading work of NS holders to the Control Rod guide blocks is subsequently carried out in the fuel handling machine maintenance pit of HTTR. Following technical issues were extracted from the experiences in the past two exchange works of NSs to develop a safety handling procedure; (1) The reduction and prevention of radiation exposure of workers. (2) The exclusion of falling of NS holder. Then, a new transportation container special to the NSs of HTTR was developed to solve the technical issues while keeping the cost as low as that for overhaul of conventional container and satisfying the regulation of A type transportation package.

Journal Articles

Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

Ikeda, Yoshimasa*; Taketani, Atsushi*; Takamura, Masato*; Sunaga, Hideyuki*; Kumagai, Masayoshi*; Oba, Yojiro*; Otake, Yoshie*; Suzuki, Hiroshi

Nuclear Instruments and Methods in Physics Research A, 833, p.61 - 67, 2016/10

 Times Cited Count:38 Percentile:96.53(Instruments & Instrumentation)

A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by the large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 minutes. The minimum resolution of the 110 reflection for RANS is approximately 2.5 % at 8 $$mu$$s of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 $$mu$$s, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenite phase was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS was proved to be capable for neutron engineering diffraction aiming for the easy access measurement of the texture and the amount of retained austenite.

Journal Articles

A Parametric study for the seismic response analysis of a nuclear reactor building by using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Nakajima, Norihiro

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 7 Pages, 2016/06

Research and development of three-dimensional vibration simulation technologies for nuclear facilities have been promoted in the Center for Computational Science and e-Systems of the Japan Atomic Energy Agency (JAEA). A seismic intensity of upper 5 was observed in the area of High-Temperature Engineering Test Reactor (HTTR) at the Oarai Research and Development Center of the JAEA during the 2011 Tohoku earthquake. In this paper, we report a parametric study of seismic response analyses of this earthquake using three-dimensional finite element models of the HTTR building with various uncertainty parameters (e.g. soil-structure interaction effects, soil properties). By examining the variation of the response result against the uncertainty parameters, we obtained a knowledge, which is essential for constructing a valid three-dimensional finite element model.

JAEA Reports

Study on correlation effect between factors of statistical hot spot factor for HTGR design

Fukaya, Yuji; Nishihara, Tetsuo

JAEA-Research 2016-001, 23 Pages, 2016/05

JAEA-Research-2016-001.pdf:3.31MB

A study on Correlation effect between elements of statistical hot spot factor for High Temperature Gas-cooled Reactor (HTGR) Design had been performed. Both of safety and reactor specification can be remained if the uncertainty is correctly propagated by revising hot spot factor. In this context, it is reported for light water reactor design that the propagated uncertainty can be reduced by statistical hot spot factors with numerical statistical approach, that is Monte Carlo method, because correlation effects for each factor can be considered. For HTGR with sleeve covered fuel, it is expected that the fuel temperature also reduces by employing the same approach because the gap between sleeve and fuel compact, which shows significant temperature increase, have direct correlation. In addition, Monte Carlo method treats correlation effect at the price of evaluating contribution of individual factor. Therefore, improved method based on conventional method has been developed in this study. Then, statistical hot spot factor for fuel temperature of HTGR was evaluated by Monte Carlo method and the improved method. As a result, it is not found significant difference between the result of the conventional method and the improved method. Moreover, usage of hot spot factor is investigated and we proposed new one reflecting the investigation.

Journal Articles

Development of transportation container for the neutron startup source of High Temperature engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Ono, Masato; Tochio, Daisuke; Takada, Shoji; Sawahata, Hiroaki; Kawamoto, Taiki; Hamamoto, Shimpei; Shinohara, Masanori

Proceedings of International Topical Meeting on Research Reactor Fuel Management and Meeting of the International Group on Reactor Research (RRFM/IGORR 2016) (Internet), p.1034 - 1042, 2016/03

In High Temperature Engineering Test Reactor (HTTR), three neutron holders containing $$^{252}$$Cf with 3.7 GBq for each are loaded in the graphite blocks and inserted into the reactor core as a neutron startup source which is changed at the interval of approximately ten years. These neutron holders containing the neutron sources are transported from the dealer's hot cell to HTTR using the transportation container. The holders loading to the graphite block are carried out in the fuel handling machine maintenance pit of HTTR. There were two technical issues for the safety handling work of the neutron holder. The one is the radiation exposure caused by significant movement of the container due to an earthquake, because the conventional transportation container was so large ($$phi$$1240 mm, h1855 mm) that it can not be fixed on the top floor of maintenance pit by bolts. The other is the falling of the neutron holder caused by the difficult remote handling work, because the neutron holder capsule was also so long ($$phi$$155 mm, h1285 mm) that it can not be pulled into the adequate working space in the maintenance pit. Therefore, a new and low cost transportation container, which can solve the issues, was developed. To avoid the neutron and $$gamma$$ ray exposure, smaller transportation container ($$phi$$820mm, h1150 mm) which can be fixed on the top floor of maintenance pit by bolts was developed. In addition, to avoid the falling of the neutron holder, smaller neutron holder capsule ($$phi$$75 mm, h135 mm) with simple handling mechanism which can be treated easily by manipulator was also developed. As the result of development, the neutron holder handling work was safely accomplished. Moreover, a cost reduction for manufacturing was also achieved by simplifying the mechanism of neutron holder capsule and downsizing.

276 (Records 1-20 displayed on this page)